3 (Sem-5/CBCS) MAT HC 2

ment eroin entel no 2023

MATHEMATICS

neds & sulave (Honours Core) oggettos

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following questions as directed: 1×10=10

(a) Let
$$A = \begin{pmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{pmatrix}$$
 and $\vec{u} = \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}$.

Check whether \vec{u} is in null space of A.

- (b) Define subspace of a vector space.
 - (c) Give reason why \mathbb{R}^2 is not a subspace of \mathbb{R}^3 .

- State whether the following statement is true or false : "If dimension of a vector space V is p>0 and S is a linearly dependent subset of V, then S contains more than p elements."
- If \vec{x} is an eigenvector of A (e) corresponding to the eigenvalue λ then what is $A^3\vec{x}$?
- When two square matrices A and B are said to be similar?
- If $\vec{v} = (1 2 \ 2 \ 4)$ then find $\|\vec{v}\|$.
- 'Find a unit vector in the direction of $\vec{u} = \begin{bmatrix} 8/3 \\ 2 \end{bmatrix}$
- (i) Under what condition two vectors \vec{u} and \vec{v} are orthogonal to each other?
- Define orthogonal complement of (i) vectors.
- Answer the following questions: $2 \times 5 = 10$
 - (a) Show that the set $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$ is not a subspace of \mathbb{R}^2 .

(b) Let
$$\vec{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\vec{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $\beta = \{b_1, b_2\}$. Find the coordinate vector $[x]_{\beta}$ of \vec{x} relative to β .

(c) Find the eigenvalues of
$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$
.

(d) Let P_2 be the vector space of all polynomials of degree less than equal to 2. Consider the linear transformation $T: P_2 \rightarrow P_2$ defined by $T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$. Find the matrix representation $[T]_{\beta}$ of T with respect to the base $\beta = \{1, t, t^2\}$.

(e) Show that the matrix
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$
 has orthogonal columns.

3

- 3. Answer any four questions: 5×4=20
 - (a) Let $S = \{v_1, v_2, ..., v_p\}$ be a set in the vector space V and H = span(S). Now if one of the vector in S, say v_k , is linear combination of the other vectors in S, then show that S is linearly dependent and the subset of $S_1 = S \{v_k\}$ still span H. 2+3=5
 - (b) Show that the set of all eigenvectors corresponding to the distinct eigenvalues of a $n \times n$ matrix A is linearly independent.
 - (c) Let W be a subspace of the vector space V and S is a linearly independent subset of W. Show that S can be extended, if necessary, to form a basis for W and $dim W \leq dim V$.

(d) If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
. Find an

invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

(e) If $\vec{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\vec{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$ then find the orthogonal projection of \vec{y} onto \vec{u} and write \vec{y} as the sum of two orthogonal vectors, one in $span \{\vec{u}\}$ and the other orthogonal to \vec{u} .

(f) If
$$W = span\{x_1, x_2\}$$
 where $x_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$,
$$x_2 = \begin{bmatrix} \frac{1}{3}\\\frac{1}{3}\\-\frac{2}{3} \end{bmatrix}$$
, find a orthogonal basis for w

Answer either (a) or (b) from each of the following questions: $10\times4=40$

4. (a) Find a spanning set for the null space of the matrix:

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Is this spanning set linearly independent?

8+2=10

- (b) (i) If a vector space V has a basis of n vectors, then show that every basis of V must consist of exactly n vectors.
- (ii) Find a basis for column space of the following matrix:

$$B = \begin{bmatrix} 1 & 4 & 0 & 2 & -1 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

5. (a) Define eigenvalue and eigenvector of a matrix. Find the eigenvalues and corresponding eigenvectors of the

$$\begin{array}{ccc}
\text{matrix} & \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}. & 2+8=10
\end{array}$$

- (b) Let T be a linear operator on a finite dimensional vector space V and let W denote the T-cyclic subspace of V generated by a non-zero vector v∈V.
 If dim (W) = k then show that
 - (i) $\{v, T(v), T^2(v), \dots, T^{k-1}(v)\}$ is a basis for W.

6

(ii) If
$$a_0v + a_1T(v) + ... + a_{k-1}T^{k-1}(v) + T^k(v) = 0,$$
 then the characteristics polynomial of T_{vv} is

of
$$T_w$$
 is
$$f(t) = (-1)^k \left(a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k \right).$$

$$6+4=10$$

- 5. (a) (i) Define orthogonal set of vectors. Let $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p\}$ is an orthogonal set of non-zero vectors in \mathbb{R}^n , then show that S is linearly independent. 1+4=5
 - (ii) For any symmetric matrix show that any two eigenvectors from different eigenspaces are orthogonal. 5
 - (b) Define inner product space. Show that the following is an inner product in \mathbb{R}^2 $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$

Where
$$u = (u_1, u_2), v = (v_1, v_2) \in \mathbb{R}^2$$

Also, show that in any inner product space V ,

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||, \quad \forall u, v \in V.$$

$$2+4+4=10$$

7. (a) (i) Consider the bases
$$\beta = \{b_1, b_2\}$$
 and $\gamma = \{c_1, c_2\}$ for \mathbb{R}^2 where

$$b_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}, \quad c_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$$

and
$$c_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$$
, find the change of coordinate matrix from γ to β and from β to γ .

(ii) Compute A¹⁰ where

The same
$$A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$$
 in section 5

(b) State Cayley-Hamilton theorem for matrices. Verify the theorem for the matrix $M = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ and hence find

 $|\langle u, v \rangle| \le |u| \cdot |v|$, $\forall u, v \in V$