3 (Sem-5/CBCS) PHY HC2

2024

PHYSICS

(Honours Core)

Paper: PHY-HC-5026

(Solid State Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer of the following questions from the given options: 1×7=7
 - (a) Atomic packing factor of simple cubic structure is
 - (i) π
 - (ii) $\pi/2$
 - (iii) $\pi/4$
 - (iv) $\pi/6$

- (b) A phonon does not have momentum but a phonam with wave vector k when interacts with other particles and fields, behaves as if it has a momentum
 - (i) ħk
 - (ii) hk
 - (iii) $\frac{1}{2}\hbar k$
 - (iv) $\frac{1}{2}hk$
- (c) Two paramagnetic substances have susceptibilities χ_1 and χ_2 at absolute temperatures T_1 and T_2 respectively, then the ratio of χ_1 and χ_2 equals to
 - (i) $\frac{T_2}{T_1}$
 - (ii) $\frac{T_1}{T_2}$
 - (iii) $\frac{{T_2}^2}{{T_1}^2}$
 - (iv) $\frac{T_1^2}{T_2^2}$

- (d) The polarisation which is observed in all kinds of materials is
 - (i) ionic polarisation
 - (ii) dipolar polarisation
 - (iii) electronic polarisation
 - (iv) space charge polarisation
- (e) Piezoelectric coefficients of ferroelectrics are
 - (i) very small
 - (ii) small
 - (iii) large
 - (iv) very large
- (f) For a sample having $8 \times 10^{28}/m^3$ numbers of electrons per unit volume, the Hall coefficient will be
 - (i) $0.078 \times 10^{-9} \, m^3 / C$
 - (ii) $0.128 \times 10^{-9} \, m^3 / C$
 - (iii) $0.081 \times 10^{-9} \, m^3 / C$
 - (iv) $0.016 \times 10^{-9} \, m^3 / C$

- (g) The critical temperature of mercury with isotropic mass 199.5 amu is 4.185K. When its isotropic mass changes to 203.4 amu, the critical temperature will be
 - (i) 4.198K
 - (ii) 4.169K
 - (iii) 4.146K
 - (iv) None of the above
- 2. Answer the following questions: 2×4=8
 - (a) What is complex dielectric constant?
 - (b) Explain, what do you mean by firstorder and second order phase transition in case of ferroelectric crystals.
 - (c) Describe the significance of Block function.
 - (d) Draw the unit cell of simple cubic lattice showing clearly the Miller indices of all its six faces.

- 3. Answer **any three** of the following questions: 5×3=15
 - (a) Show that the reciprocal lattice of a bcc lattice is a fcc lattice.
 - (b) How lattice vibrations are quantized?

 Name the various vibrational modes of a linear monoatomic lattice.

 Differentiate between normal processes and umklapp processes. 2+1+2=5
 - (c) What do you mean by ferromagnetic domain? Explain the role of Block wall in case of domain formation. What is magnetic energy and anisotropic energy? 1+2+2=5
 - (d) What do you mean by Fermi level? What is Fermi sphare? Write down the Fermi distribution function at temperature T. Give a schematic representation of this function at temperatures T_1 and T_2 , where $T = 0^\circ K$ and $T_2 > T_1$. 1+1+1+2=5
 - (e) Differentiate between Type I and Type II superconductors showing their magnetisation curves. What is intermediate state?

 3+2=5

- 4. Answer **any three** of the following questions: 10×3=30
 - (a) (i) Show that Bragg's law in vector form when obtained from Ewald construction in reciprocol lattice is given by

$$G^2 + 2 \vec{k}.\vec{G} = 0$$

where \vec{G} is reciprocal lattice vector.

- (ii) When X-rays of wavelength 1.8 Å are used, the Bragg's angle corresponding to the first-order reflection from (1, 1, 1) planes in a crystal is 45°. Calculate the interatomic spacing for the crystal.
- (b) (i) Obtain Debye's T^3 law of specific heat of solids.
 - (ii) Evaluate the Debye frequency of a crystal lattice corresponding to Debye temperature 350K. Given that Boltzmann constant is

$$1.38 \times 10^{-23} \ m^2 kg \, s^{-2} K^{-1}$$
 3

- (c) (i) Use Langevin's classical theory to show that the paramagnetic susceptibility is inversely proportional to temperature. 7
 - (ii) The magnetic field of 20 CGS units produces a flux of 2400 CGS units in an iron bar of cross-section $0.2cm^2$. Calculate the permeability and susceptibility of this bar.
- (d) (i) Establish Clausius-Mossotti relation between polarisability and dielectric constant of a material.

(ii) Calculate the induced dipole moment per unit volume of He gas placed in an electric field of $6\times10^5 \, volt/m$. The molecular polarisability of He is 2.33×10^{-41} farrad $-m^2$ and the density of He is 20.6×10^{25} molecules/ m^3 .

(e) (i) Use free electron theory of metals to show that at constant temperature the ratio of thermal to electrical conductivity of metals is a constant.

- (ii) For a semiconductor, the intrinsic carrier density is $1.5 \times 10^{16} \, m^{-3}$. If the mobility of electrons and holes are 0.13 and $0.5 m^2 V^{-1} s^{-1}$ respectively, calculate the conductivity.
- (f) (i) State the Curie-Weiss law. What do you mean by Ferroelecrtic Curie temperature? Explain in brief the significance of P-E hysteresis loop in case of ferroelectricity.

2+1+2=5

(ii) Write down the London equations of superconductivity. Show that Meissner effect contradicts the Maxwell's equation. 2+3=5