3 (Sem-4/CBCS) MAT HC 2

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-4026

(Numerical Methods)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed: 1×7=7
 - (a) What is the order of convergence of Regula-Falsi method?
 - (i) 2·312
 - (ii) 2·231
 - (iii) 1.618
 - (iv) 1.321

(Choose the correct option)

(b) Find
$$\Delta^{n+1} x^n = ?$$

- (c) Write down Newton's forward interpolation formula.
- (d) The Newton-Raphson method is also called as
 - (i) tangent method
 - (ii) secant method
 - (iii) chord method
 - (iv) diameter method

(Choose the correct option)

- (e) In the general Quadrature formula Simpson's one third rule is obtained by putting
 - (i) n = 1
 - (ii) n=2
 - (iii) n=3
 - (iv) n=4

(Choose the correct option)

(f) The value of
$$\int_0^{\pi/4} \frac{dx}{1+x^2}$$
 is

- (i) 0
- (ii) 1
- (iii) 2
- (iv) None of the above

(Choose the correct option)

- (g) Where is Euler's method used?
- 2. Answer the following questions: 2×4=8
 - (a) Define rate of convergence and order of convergence of a sequence.
 - (b) Evaluate: $\frac{\Delta^2}{E} x^3$
 - (c) Construct a divided difference table from the following data:

x	-1	1	2	3
y	-21	15	12	3

- (d) Why is Lagrange's formula considered to be of more general nature than Newton's formula?
- 3. Answer any three questions: 5×3=15
 - (a) What do you mean by algorithm? Use the statistics algorithm to compute the mean and standard deviation of the following data:

 1+4=5

(b) Find a root of the equation

$$x^3 - 4x - 9 = 0$$

using the bisection method correct up to 3 decimal places.

(c) Show that

(i)
$$\delta \equiv \nabla (I - \nabla)^{-1/2}$$

(ii)
$$E \Delta = \Delta E$$
 3+2=5

- (d) Find the rate of convergence of Newton-Raphson method.
- (e) Using Lagrange's interpolation formula for unequal interval, find the values of f(2) and f(15) from the following data:

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

- 4. Answer the following questions: 10×3=30
 - (a) Determine the root of $xe^x 2 = 0$ by the method of false position. Perform five iterations.

OR

Form an *LU* decomposition of the following matrix:

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & -2 \end{pmatrix}$$

(b) Let $x_0, x_1, ... x_n$ be (n+1) distinct points on [a, b]. If f is continuous on [a, b] and has n continuous derivatives on (a, b), then prove that there exist some $\xi \in (a, b)$ such that

$$f[x_0, x_1, ..., x_n] = \frac{f^n(\xi)}{\xi!}$$

where
$$f^{n}(x) = \frac{d^{n}f(x)}{dx^{n}}$$
.

Find the interpolating polynomial from the data given below using divided differences:

$$x$$
: -2 0 2
 $f(x)$: 4 2 8 5+5=10

OR

Derive the formula for finding first and second order derivatives using Newton's forward difference formula.

Given that

X	: 1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y	7.989	8 · 403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at 5+5=10

(c) Define numerical integration.

Obtain a general quadrature formula for $\int_a^b f(x) dx.$

Hence deduce Simpson's $\frac{1}{3}$ rd rule.

1+5+4=10

OR

Write a short note on Euler's method. Give the geometric interpretation of Euler's method.

Give an algebraic interpretation of Euler's method.

Solve by using Euler's method:

$$y' = x + y$$
; $y(0) = 2$ for $0 \le x \le 1$
 $h = 0.5$ $2+2+2+4=10$