Total number of printed pages-31

3 (Sem-3/CBCS) MAT HG 1/RC/HG 2

2022

MATHEMATICS

(Honours Generic/Regular)

Answer the Questions from any one Option.

OPTION-A

Paper: MAT-HG-3016/MAT-RC-3016

(Differential Equations)

OPTION-B

Paper: MAT-HG-3026

(Linear Programming)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

OPTION-A

Paper: MAT-HG-3016/MAT-RC-3016

(Differential Equations)

Answer either in English or in Assamese.

1. Answer the following questions: (any ten) $1 \times 10 = 10$

তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ কৰা ঃ (যিকোনো দহটা)

(a) Write down the order of the following differential equation:

তলৰ অৱকল সমীকৰণটোৰ ক্ৰম লিখা ঃ

$$\frac{d^6x}{dt^6} + \left(\frac{d^4x}{dt^4}\right) \left(\frac{d^3x}{dt^3}\right) + x = t$$

(b) What is meant by implicit solution of a differential equation?

এটা অৱকল সমীকৰণৰ অন্তৰ্নিহিত সমাধান মানে কি ?

(c) Form the differential equation of the family of circles $x^2 + y^2 = a^2$.

 $x^2+y^2=a^2$ বৃত্তৰ পৰিয়ালটোৰ অৱকল সমীকৰণটো গঠন কৰা।

- (d) Define an exact differential equation.
 এটা যথাৰ্থ অৱকল সমীকৰণৰ সংজ্ঞা লিখা।
- Evaluate the Wronskian of the functions sinx and cosx.
 sinx আৰু cosx ফলন দুটাৰ Wronskian নির্ণয়
 কৰা।
- (f) State whether the following equation is homogeneous or not:

তলৰ সমীকৰণটো সমমাত্ৰিক হয়নে নহয় লিখাঃ

$$\left(x^2 + 3y^2\right)dx - 2xydy = 0$$

- (g) Check exactness of (যথাৰ্থতা পৰীক্ষা কৰা) ঃ $\left(x^2 + 2y^2\right) dx + \left(4xy y^2\right) dy = 0$
- (h) When is a family of curves said to be self-orthogonal?
 এটা বক্ৰৰ পৰিয়ালক কেতিয়া স্থলম্বীয় বুলি কব পাৰি ?
- (i) Write the UC set corresponding to the UC function x^2e^x .

UC ফলন x^2e^x সাপেক্ষে UC সংহতিটো লিখা।

(j) If e^{2x} and e^{3x} are two linearly independent solutions of a 2nd order linear differential equation, write down the general solution.

 e^{2x} আৰু e^{3x} এটা দ্বিমাত্ৰাৰ অৱকল সমীকৰণৰ দুটা ৰৈখিকভাৱে স্বতন্ত্ৰ সমাধান হ'লে সমীকৰণটোৰ সাধাৰণ সমাধান লিখা। (k) The roots of the auxiliary equation corresponding to a 5th order linear differential equation are 2, 2, 2, 3±4i. Write the general solution of the equation.

এটা 5 মাত্ৰাৰ ৰৈখিক অৱকল সমীকৰণৰ সহায়ক সমীকৰণটোৰ মূল কেইটা 2, 2, 3 ± 4i হ'লে সমীকৰণটোৰ সাধাৰণ সমাধান লিখা।

(1) Consider the equation

$$(2x-5y) dx + (4x-y) dy = 0$$

What transformation will reduce it to a separable equation?

(2x-5y) dx + (4x-y) dy = 0 সমীকৰণটোক কি ৰূপান্তৰে এটা বিয়োজিত (separable) সমীকৰণলৈ সমানীত কৰিব ?

(m) Determine the integrating factor of: অনুকলন গুণক উলিওৱা ঃ

$$\frac{dy}{dx} + \frac{3y}{x} = 6x^2$$

(n) In the differential equation

$$M(x, y)dx + N(x, y)dy = 0$$
, if

$$\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right] \text{ depends}$$

upon x only, what will be the integrating factor of the equation?

$$M(x, y)dx + N(x, y)dy = 0$$

অৱকল সমীকৰণটোৰ যদিহে

$$\frac{1}{N(x,y)} \left[\frac{\partial M(x,y)}{\partial y} - \frac{\partial N(x,y)}{\partial x} \right]$$

অকল x ৰ নিৰ্ভৰশীল হয় তেন্তে সমীকৰণটোৰ অনুকলন গুণক কি ?

(o) Solve (সমাধান কৰা):

$$ydx + xdy = 0$$

(p) Write down the general form of Cauchy-Euler equation of order n.

n মাত্ৰাৰ কচি-ইউলাৰ সমীকৰণৰ সাধাৰণ ৰূপটো লিখা।

(q) Is the equation linear?
সমীকৰণটো ৰৈখিক হয়নে ?

$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} + x = 0$$

(r) Write down the UC set corresponding to UC function sin x.

UC ফলন sin x সাপেক্ষে UC সংহতিটো লিখা।

2. Answer the following questions: (any five) $2 \times 5 = 10$

তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ কৰা ঃ (যিকোনো পাঁচটা)

(a) Determine all values of constant m for which $y = e^{mx}$ is a solution of the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0.$$

m ৰ সকলো মান নির্ণয় কৰা, যাৰ বাবে

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$$
 সমীকৰণটোৰ $y = e^{mx}$
এটা সমাধান হয়।

(b) What is meant by singular solution of a differential equation?

এটা অৱকল সমীকৰণৰ একক সমাধান বুলিলে কি বুজা ?

(c) Write down the complementary function of the differential equation

$$\frac{d^2y}{dx^2} - y = \tan x.$$

$$\frac{d^2y}{dx^2} - y = \tan x$$
 অৱকল সমীকৰণটোৰ পৰিপূৰক ফলনটো লিখা।

(d) Determine the most general function M(x, y) such that the equation

$$M(x, y)dx + (2x^2y^3 + x^4y)dy = 0$$
 is exact.

অত্যন্ত সাধাৰণ ফলন M(x,y) উলিওৱা যাতে,

$$M(x, y)dx + (2x^{2}y^{3} + x^{4}y)dy = 0$$

সমীকৰণটো যথাৰ্থ হয়।

(e) Show that the differential equation $(x^2 - 3y^2) dx + 2xy dy = 0$ is homogeneous.

দেখুওৱা যে $(x^2 - 3y^2)dx + 2xydy = 0$ অৱকল সমীকৰণটো সমমাত্ৰিক।

(f) Show that the ordered pair of functions $(3e^{7t}, 2e^{7t})$ is a solution of the linear system:

দেখুওৱা যে ক্ৰমিত যুগ্ম ফলন $\left(3e^{7t}, 2e^{7t}\right)$ তলৰ ৰৈখিক প্ৰণালীটোৰ এটা সমাধান হয় \circ

$$\frac{dx}{dt} = 5x + 3y$$

$$\frac{dy}{dt} = 4x + y$$

(g) Write down the form of particular solution for the differential equation:

তলৰ অৱকল সমীকৰণটোৰ বিশেষ সমাধান (particular solution) ৰ ৰূপটো লিখাঃ

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4x^2$$

- (h) Solve (সমাধান কৰা): $x \sin y \, dx + \left(x^2 + 1\right) \cos y \, dy = 0$
- (i) Reduce the Bernoulli's equation $x\frac{dy}{dx}+y=-2x^6y^4 \text{ to linear equation by appropriate transformation.}$ উপযুক্ত ৰূপান্তৰ সহায়ত বাৰ্নোলীৰ সমীকৰণ $x\frac{dy}{dx}+y=-2x^6y^4 \text{ ক ৰৈখিক সমীকৰণলৈ }$ সমানীত কৰা।
- (j) Find the general solution : সাধাৰণ সমাধান উলিওৱা ঃ

$$4\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 5y = 0$$

- 3. Answer the following questions : **(any four)**5×4=20
 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ কৰা ঃ *(যিকোনো চাৰটা)*
 - (a) Show that the relation $x^2 + y^2 25 = 0$ is an implicit solution of the differential equation $x + y \frac{dy}{dx} = 0$ on the interval I defined by -5 < x < 5.

দেখুওৱা যে -5 < x < 5 অন্তৰালত

$$x + y \frac{dy}{dx} = 0$$
 অৱকল সমীকৰণটোৰ

$$x^2 + y^2 - 25 = 0$$
 এটা অন্তর্নিহিত সমাধান হয়।

- (b) Write down the general form of a Bernoulli equation. Describe the method of reducing this equation to a linear equation.

 1+4=5
 বার্নোলী সমীকৰণৰ সাধাৰণ ৰূপটো লিখা। এই সমীকৰণক এটা ৰৈখিক সমীকৰণলৈ সমানীত কৰা পদ্ধতিটো ব্যাখ্যা কৰা।
 - c) Solve (সমাধান কৰা): (3x y 6)dx + (x + y + 2)dy = 0
- (d) Reduce to first order differential equation and then solve: 1+4=5
 এক মাত্ৰাৰ (ক্ৰমৰ) অৱকল সমীকৰণলৈ সমানীত কৰি
 সমাধান কৰাঃ

$$y''+y'=0$$

(e) Solve the Cauchy-Euler equation:

কচি-ইউলাৰ সমীকৰণটো সমাধান কৰাঃ

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^3$$

(f) Determine the constant A such that the following equation is exact:

A ৰ মান উলিওৱা যাতে তলৰ অৱকল সমীকৰণটো যথাৰ্থ হয় ঃ

$$(Ax^2y + 2y^2)dx + (x^3 + 4xy)dy = 0$$

Hence solve the resulting exact equation. 2+3=5

লগতে লব্ধ যথাৰ্থ সমীকৰণটো সমাধান কৰা।

(g) Show that x=t+1, y=-5t-2 is a particular solution of the non-homogeneous linear system

$$\frac{dx}{dt} = 5x + 2y + 5t$$

$$\frac{dy}{dt} = 3x + 4y + 17t$$

Write the general solution of the system.

দেখুওৱা যে x = t + 1, y = -5t - 2 তলৰ অসমমাত্রিক ৰৈখিক প্রণালীটোৰ সাধাৰণ সমাধান হয় ϵ

$$\frac{dx}{dt} = 5x + 2y + 5t$$
$$\frac{dy}{dt} = 3x + 4y + 17t$$

লগতে প্ৰণালীটোৰ সাধাৰণ সমাধান লিখা

(h) Solve the initial value problem: আদিমান বিশিষ্ট সমীকৰণটো সমাধান কৰা ঃ

$$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = 0, \quad y(0) = -4,$$

y'(0) = 2

4. Answer the following questions: (any four) $10\times4=40$

তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ কৰা ঃ (যিকোনো চাৰটা)

(a) Prove that the linear differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ has an integrating factor of the form $e^{\int P(x)dx}$ and one-parameter family of solution

$$y.e^{\int P(x)dx} = \int e^{\int P(x)dx} Q(x)dx + C$$

$$7+3=10$$

প্ৰমাণ কৰা যে ৰৈখিক অৱকল সমীকৰণ

$$\frac{dy}{dx} + P(x)y = Q(x)$$
 ৰ $e^{\int P(x)dx}$ এটা অনুকলন গুণক হয় আৰু সমীকৰণটোৰ এক চলকযুক্ত সমাধান হ'ল

$$y.e^{\int P(x)dx} = \int e^{\int P(x)dx} Q(x)dx + C$$

- (b) (i) Find the orthogonal trajectories of the family of parabolas $y=cx^2$. 5 $y=cx^2$ অধিবৃত্তৰ পৰিয়ালটোৰ লাম্বিক প্রক্ষেপপথ নির্ণয় কৰা।
- (ii) Find a family of oblique trajectories that intersect the family of circles $x^2 + y^2 = c^2$ at an angle 45°.

 $x^2 + y^2 = c^2$ বৃত্তৰ পৰিয়ালটোক 45° কোণত ছেদ কৰি থকা এটা তিৰ্যক প্ৰক্ষেপপথৰ পৰিয়াল উলিওৱা।

5

3 (Sem - 3/CBCS) MAT HG 1/RC/HG 2/G 14

(c) Solve the initial value problem

$$\frac{dy}{dx} + y = f(x)$$
 where

$$f(x) = \begin{cases} 5, & 0 \le x < 10 \\ 1, & x \ge 10 \end{cases} \text{ and } y(0) = 6$$

আদিমান বিশিষ্ট সমীকৰণ

$$\frac{dy}{dx} + y = f(x)$$
 সমাধান কৰা য'ত

$$f(x) = \begin{cases} 5, & 0 \le x < 10 \\ 1, & x \ge 10 \end{cases}$$

আৰু
$$y(0) = 6$$
.

(d) Solve by method of variation of parameter:

প্ৰাচল বিচৰণ পদ্ধতিৰে সমাধান কৰাঃ

$$\frac{d^2y}{dx^2} + y = \tan x \sec x$$

(e) Consider the differential equation অৱকল সমীকৰণ এটা লোৱা হ'ল

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$$

- (i) Show that e^x and xe^x are linearly independent solutions of this equation on the interval $-\infty < x < \infty$. 5 দেখুওৱা যে $-\infty < x < \infty$ অন্তৰালত e^x আৰু xe^x সমীকৰণটোৰ দুটা ৰৈখিকভাৱে স্বতন্ত্ৰ সমাধান হয়।
- (ii) Write the general solution of the equation. 2
 সমীকৰণটোৰ সাধাৰণ সমাধান লিখা।
- (iii) Find the solution that satisfies the condition y(0)=1, y'(0)=4.

 Explain why this solution is unique. 2+1=3 y(0)=1, y'(0)=4 চৰ্ত্ত সাপেক্ষেসমীকৰণটোৰ সমাধান উলিওৱা।
 এই সমাধান কিয় একক হয়, ব্যাখ্যা কৰা।

- (f) Find the general solution by the method of undetermined co-efficients : অনির্ধাবিত সহগ পদ্ধতিবে সাধাবণ সমাধান উলিওৱা ঃ $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 6\sin 2x + 7\cos 2x$
- dx^2 dx(g) Consider the linear system

ৰৈখিক প্ৰণালী এটা লোৱা হ'ল

$$\frac{dx}{dt} = 5x + 2y$$

$$\frac{dy}{dt} = 3x + 4y$$

(i) Show that (দেখুওৱা যে)

$$x = 2e^{2t}, x = e^{7t}$$

and (আৰু)

$$y = 3e^{2t}, \ y = e^{7t}$$

are solutions of this system.
এই প্ৰণালীটোৰ সমাধান হয়।

5

(ii) Show that the two solutions defined in part (i) are linearly independent on every interval $a \le t \le b$.

দেখুওৱা যে part (i) ত উল্লিখিত সমাধান দুটা $a \le t \le b$ অন্তৰালত ৰৈখিকভাৱে স্বতন্ত্ৰ হয়।

(iii) Write the general solution of the system.

প্ৰণালীটোৰ সাধাৰণ সমাধান লিখা।

(h) Solve the following: (সমাধান কৰা) 5+5=10

(i)
$$2x(y+1)dx - (x^2+1)dy = 0$$
, $y(1) = -5$

(ii)
$$(2x \sin y + y^3 e^x) dx + (x^2 \cos y + 3y^2 e^x) dy = 0$$

(i) (i) Given that y = x+1 is a solution of $(x+1)^2 \frac{d^2y}{dx^2} - 3(x+1)\frac{dy}{dx} + 3y = 0$.

Find a linearly independent solution by reducing the order.

$$(x+1)^2 \frac{d^2y}{dx^2} - 3(x+1)\frac{dy}{dx} + 3y = 0$$

অৱকল সমীকৰণটোৰ এটা সমাধান y=x+1 হয়। সমীকৰণটোৰ ক্ৰম লঘুকৃত কৰি এটা ৰৈখিকভাৱে স্বতন্ত্ৰ সমাধান উলিওৱা।

(ii) Given that e^{-x} , e^{3x} and e^{4x} are all solutions of

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 12y = 0.$$

Show that they are linearly independent on the interval $-\infty < x < \infty$.

দিয়া আছে যে e^{-x} , e^{3x} আৰু e^{4x} আটাইবোৰেই

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 12y = 0$$

অৱকল সমীকৰণটোৰ সমাধান হয়।

দেখুওৱা যে $-\infty < x < \infty$ অন্তৰালত সমাধানবোৰ ৰৈখিকভাৱে স্বতন্ত্ৰ।

3 (Sem - 3/CBCS) MAT HG 1/RC/HG 2/G 19

Contd.

Find the general solution: 5+5=10

সাধাৰণ সমাধান উলিওৱা ঃ

(i)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 3x^2$$

ATTENDED TO STATE OF THE STATE

(ii)
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$$

OPTION-B

Paper: MAT-HG-3026

(Linear Programming)

Answer any ten of the following:

 $1 \times 10 = 10$

- Define feasible solution of a linear programming problem (LPP).
- If a given LPP has two feasible solutions, then how many feasible solutions are there for the LPP?
- How many basic solutions are possible in a system of m simultaneous linear equations in n(>m) unknowns?
- When is a basic solution to the system of equations Ax = b said to be degenerate?
- (v) Define surplus variable.
- (vi) When is an LPP said to be in standard format?
- (vii) Define hyperplane.
- (viii) "All boundary points of a convex set are necessarily extreme points." Is it true?

(ix) Does the LPP

Maximize
$$3x_1 - 2x_2$$

subject to
$$x_1 + x_2 \le 1$$
$$2x_1 + 2x_2 \ge 4$$
$$x_1, x_2 \ge 0$$

have an optimal solution?

- (x) Name two methods that can be employed to solve LPP having artificial variables.
- (xi) Consider the primal problem given as Minimize $x_1 - 3x_2 - 2x_3$

subject to
$$3x_1 - x_2 + 2x_3 \le 7$$

 $2x_1 - 4x_2 \ge 12$
 $-4x_1 + 3x_2 + 4x_3 = 10$

 $x_1, x_2 \ge 0$ and x_3 unrestricted.

Can the dual of this primal have unrestricted variables?

(xii) Write the relation between Z_P and Z_D , where Z_P is the optimal value of the primal objective function and Z_D is the optimal value of the dual objective function.

- (xiii) A primal problem has 7 constraints in 3 variables. How many constraints are there in its dual?
- (xiv) When is a transportation problem said to be unbalanced?
- (xv) Write the full form of VAM.
- (xvi) What is a fair game?
- (xvii) Is it necessary that a game should always pass a saddle point?
- (xviii) Can a two-person zero-sum game in normal form be solved as an LPP?

2. Answer any five of the following: $2 \times 5 = 10$

- (f) Define basic feasible solution (B.F.S.) of an LPP. When is a B.F.S. said to be non-degenerate?
- (ii) Explain the following terms in the context of LPP:
 - (a) Objective function
 - (b) Decision variables
- (iii) Show that a hyperplane is a convex set.

(iv) Solve the following LPP graphically:

Maximize
$$Z = 4x_1 + 4x_2$$

subject to
$$x_1 + x_2 \le 5$$

 $3x_1 + x_2 \le 9$
 $x_1, x_2 \ge 0$

- (v) What is meant by unbounded solution in linear programming?
- (vi) Write the dual of the following primal problem:

Minimize
$$Z_P = 15x_1 + 12x_2$$

subject to
$$x_1 + 2x_2 \ge 3$$

 $2x_1 - 4x_2 \le 5$
 $x_1, x_2 \ge 0$

- (vii) State the fundamental theorem of duality.
- (viii) Find an initial basic feasible solution to the following transportation problem by least cost method:

	D_1	D_2	D_3	D_4	Supply
O_1	2	1	3	4	30
O_2	3	2	1	4	50
<i>O</i> ₃	5	2	3	8	20
Demand	20	40	30.	10	

- (ix) State the mathematical formulation of an assignment problem.
- (x) In a two-person zero-sum game, the pay-off matrix is given by

		= 23.	B	
		I	II	III
1	I	6	8	6
A	II	4	12	2

Find its saddle points.

- 3. Answer any four of the following: 5×4=20
 - (i) Define convex set and show that the intersection of any finite number of convex sets is a convex set.
 - (ii) Show that every basic feasible solution of an LPP is an extreme point of the convex set of its feasible solutions.
 - (iii) Solve the following LPP by simplex method:

Maximize
$$Z = 3x_1 + 2x_2$$

subject to
$$x_1 + x_2 \le 4$$

 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

(iv) Solve the following LPP by Big-M method:

Maximize
$$Z = 2x_1 + 3x_2$$

subject to
$$x_1 + 2x_2 \le 4$$

$$x_1 + x_2 = 3$$

$$x_1, x_2 \ge 0$$

(v) Find the dual of the following primal problem:

Maximize
$$2x_1 + x_2$$

subject to
$$x_1 + 5x_2 \le 10$$

$$x_1 + 3x_2 \ge 6$$

$$x_1 + x_2 \le 4$$

 $x_2 \ge 0$ and x_1 unrestricted

(vi) Use north-west corner method to find an initial basic feasible solution to the following transportation problem:

	D_1	D_2	D_3	D_4	D_5	Supply
O_1	2	11	10	3	7	4
O_2	1	4	7	2	1.	8
03	3	9	4	8	12	9
Demand ¹	3	3	4	5	6	

(vii) Find an optimal solution to the following assignment problem:

	$= I_{\mathbb{Z}^{+}}$	$_{\mathbb{F}}\mathbf{H}_{\mathbb{F}_{p}}^{+}$	III	IV
A	12	30	21	15
В	18	33	9	31
C	44	25	24	21
D	23	30	28	14

(viii) The pay-off matrix of a two-person zerosum game is given below:

				В		
		I	II	III	IV	V
	I	9	3	1	8	0
A	II	6	5	4.	6	7
	III	2	4	3	3	8
	IV	5	6	2	2	1

Find the best strategy for each player and the value of the game.

- 4. Answer **any four** questions: $10\times4=40$
 - (i) Show that the following system of linear equations has a degenerate solution:

$$2x_1 + x_2 - x_3 = 2$$
$$3x_1 + 2x_2 + x_3 = 3$$

(ii) Reduce the feasible solution $x_1 = 2$, $x_2 = 3$, $x_3 = 1$ of the following system of linear equations to a basic feasible solution:

$$2x_1 + x_2 + 4x_3 = 11$$
$$3x_1 + x_2 + 5x_3 = 14$$

- (iii) Explain the simplex procedure to solve a linear programming problem (LPP).
- (iv) Use two-phase method to solve the LPP:

Maximize
$$Z = 5x_1 - 4x_2 + 3x_3$$

subject to
$$2x_1 + x_2 - 6x_3 = 20$$
$$6x_1 + 5x_2 + 10x_3 \le 76$$
$$8x_1 - 3x_2 + 6x_3 \le 50$$
$$x_1, x_2, x_3 \ge 0$$

(v) Use Big-M method to solve the LPP: Minimize $Z = 4x_1 + x_2$

subject to
$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

- (vi) (a) What is the significance of duality in linear programming? 4
 - (b) Show that the dual of the dual is the primal.
 - (c) State the complementary slackness theorem.
- (viii) (a) Write the dual of the LPP: 5

 Minimize $x_1 + x_2 + x_3$

subject to
$$x_1 - 3x_2 + 4x_3 = 5$$

 $2x_1 - 2x_2 \le 3$
 $2x_2 - x_3 \ge 5$

 $x_1, x_2 \ge 0$ and x_3 unrestricted.

(b) Solve the dual of the following primal problem: 5

Maximize
$$3x_1 - 2x_2$$

subject to
$$x_1 \le 4$$

 $x_2 \le 6$
 $x_1 + x_2 \le 5$
 $x_2 \ge 1$
 $x_1, x_2 \ge 0$

(viii) Find and optimal solution to the following transportation problem:

and the second	D_1	D_2	D_3	D_4	Supply
W_1	19	14	23	11	11
W_2	15	16	12	21	13
W_3	30	25	16	39	19
Demand	6	10	12	15	

(ix) Apply the Hungarian method to solve the following assignment problem:

	I	II	III	IV
A	12	10	8	9
В	8	9	11	7
C	11	14	12	10
D	9	9	8	9

- (x) (a) What is game theory?
 - b) Describe a two-person zero-sum game. Also mention any two basic assumptions in it.
 - (c) Explain the following terms:
 2+2=4
 Pure strategy, Mixed strategy