3 (Sem-5/CBCS) PHY HC 2

2022

PHYSICS

(Honours)

Paper: PHY-HC-5026

(Solid State Physics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer from the following: (any seven) 1×7=7
 - (a) The number of atoms per unit cell of a body centred cubic lattice (bcc) is
 - (i) 8
 - (ii) 1
 - (iii) 3
 - (iv) 2

(b) Classify the following unit cell into proper crystal system, a = 1.08 nm, b = 1.947 nm, c = 0.52 nm and

$$\alpha = 41^{\circ}, \ \beta = 82^{\circ}, \ \gamma = 95^{\circ}$$

- (i) Triclinic
- (ii) Monoclinic
- (iii) Orthorhombic
- (iv) Hexagonal
- (c) Because of which property of the crystals, X-rays can be defracted from the crystals?
 - (i) Random arrangement of atoms
 - (ii) Colour of the crystals
 - (iii) Periodic array of atoms
 - (iv) None of the above
- (d) The harmonic oscillator can have values of energy as
 - (i) $n\hbar w^2$
 - (ii) n²ħw
 - (iii) nhw
 - (iv) 2nhw

- (e) The unit of magnetic susceptibility is
 - (i) Wb/m^2
 - (ii) Wb/m
 - (iii) amp/m
 - (iv) unitless ratio
 - (f) Diamagnetic materials possess
 - (i) permanent magnetic dipoles
 - (ii) no permanent magnetic dipoles
 - (iii) induced dipole moment
 - (iv) None of the above
 - (g) Most widely used conducting materials are
 - (i) germanium and silicon
 - (ii) copper and alumium
 - (iii) gold and silver
 - (iv) tungsten and platinum

3

- (h) Transition temperature T_c and critical field H_c for a superconductor are related to (H_0 : critical field at 0K, T_0 : Transition temperature at $0^{\circ}K$.)
 - (i) $H_c = H_0(T_c 1)$
 - (ii) $H_c = H_0(T_c + 1)$

(iii)
$$T_c = T_0 \left[1 - \left(\frac{H_0}{H_c} \right)^2 \right]$$

(iv)
$$H_c = H_0 \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$

- (i) The forbidden energy gap of carbon in diamond structure is
 - (i) 0.7 eV
 - (ii) 1 eV
 - (iii) 0.01 eV
 - (iv) None of the above

- (j) Intrinsic germanium can be made Ptype semiconductor by doping with
 - (i) phosphorous
 - (ii) aluminium
 - (iii) sulphur
 - (iv) carbon
- (k) The polarization P in a solid, dielectric field E and the electric flux density D can be related by the relation

(i)
$$E = \varepsilon_0 D + P$$

(ii)
$$D = E + \varepsilon_0 P$$

(iii)
$$D = E \varepsilon_0 + P$$

(iv)
$$D = \varepsilon_0 (E + P)$$

- (1) The chemical formula for magnetite is
 - (i) Fe_2O_3
 - (ii) FeO
 - (iii) Fe₃O₄
 - (iv) $Fe(OH)_2$

- 2. Give short answers of the following questions: (any four) 2×4=8
 - (a) Write the basic differences between crystal and amorphous solid.
 - (b) Show that for a simple cubic lattice $d_{100}:d_{110}:d_{111}=\sqrt{6}:\sqrt{3}:\sqrt{2}$
 - (c) (i) Define Fermi energy level.
 - (ii) Draw the Fermi function with respect to energy for the temperature at T = 0K and T = 300 K.
 - (d) What do you mean by magnetic permeability and magnetic susceptibility?
 - (e) (i) Write the Dulong and Petit law related to specific heat of solid.
 - (ii) What do you understand by phonon?
 - (f) How are the variation of resistance (R) with temperature (T) changes for normal conductor and superconductor? Draw a simple graph of R vs T.
 - (g) Define dipole moment and polarization vector of dielectric.

6

(h) What do you mean by Atomic form factor and Geometrical structure factor?

. Ansv	wer	any three from the following
	stion	
(a)	(i)	What do you mean by atomic packing factor of a crystal? 1
	(ii)	Find out the packing factor of face centred cubic structure of a crystal.
(b)	(i)	Discuss the success and limitations of classical free electron theory of metal. 2
	(ii)	Why free electron theory is important in solid state physics?
	(iii)	Write down basic differences of classical and quantum free electron theory of metals. 2
(c)	(i)	What is Hall effect?
	(ii)	Find out the expression for Hall coefficient.
	(iii)	Write down the applications of phenomenon of Hall effect. 1
(d)	Wha	at are differences between
	ferr	omagnetic paramagnetic and

diamagnetic materials?

- (e) Draw the band structure for intrinsic semiconductor, p-type and n-type semiconductor.
- (f) (i) What do you mean by drift velocity, mobility of a conductor?
 - (ii) Write the expression for conductivity of intrinsic and extrinsic semiconductor. 2
 - (iii) Why conductivity of a metal decreases with the increase of temperature?
- (g) (i) What is superconductivity?
 - (ii) Explain type-I and type-II superconductor.
- (h) Discuss Meissner effect of superconductor.
- 4. Answer the following questions:

 (any three) 10×3=30
 - (a) (i) Why X-rays are used for material characterization? Can X-ray be defracted from a single slit of width 0.1 mm? Justify your answer.

- (ii) State the Bragg's law in X-ray diffraction of a crystalline solid.

 Derive its expression. 1+2=3
- plane in NaCl is 2.82 Å. X-rays incident on the surface of the crystal is found to give rise to 1st order Bragg's reflections at glancing angle 8.8°. Calculate the wavelength of X-rays.

(Given $\sin 8.8^{\circ} = 0.152$) 5

- (b) (i) What is Miller indices in a crystal?
 - (ii) How Miller indices are determined?
 - (iii) Draw (100), (001), (010) and (111) plane of a simple cubic structure.
 - (iv) Miller indices of a plane is (326). Find out the point of intercept made by the plane along the three crystallographic areas (x, y, z).

- (v) The density of iron (having bcc structure) is $7900 \ kg/m^3$ and its atomic weight is 56. Calculate lattice parameters.
- (c) (i) State the Wiedemann-Franz law in solid. Discuss its physical significant.
 - (ii) Discuss the classical and quantum mechanical expression of Lorentz number. 5
 - (iii) For copper at $20 \,^{\circ}C$, the electrical and thermal conductivity are $1.7 \times 10^{8} \, \Omega m$ and $380 \, Wm^{-1} \, K^{-1}$ respectively. Calculate Lorentz number.
- (d) (i) Discuss the original concept of band theory of solid.
 - (ii) Discuss Kronig-Penney model related to band theory of solid.
 - (iii) What do you mean by Brillouin zones?
- (e) (i) What is specific heat of solid?

- (ii) Discuss Einstein theory of specific heat of solid. 8
- (f) (i) Deduce the expression for Curie law using classical theory of paramagnetism.
 - (ii) What is ferromagnetic domain?
 - (iii) How hysteresis curve is related to energy loss?
- (g) (i) Define Piezoelectric effect,
 Pyroelectric effect and
 Ferroelectric effect in solid. 3
 - (ii) Derive the Clausius-Mossotti equation for dielectric material.
- (h) Write short notes on **any two** of the following: $5 \times 2 = 10$
 - (i) Bravais lattice
 - (ii) Reciprocal lattice
 - (iii) Symmetry in crystal

11

(iv) Plasma oscillations