## 3 (Sem-5/CBCS) ZOO HC 1

## 2022

## ZOOLOGY

(Honours)

Paper: ZOO-HC-5016

(Molecular Biology)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer: (any seven)

  1×7=7
  - (i) The number of base pair per turn is 11 in

- (a) Z-DNA
- (b) A-DNA
- (c) B-DNA
- (d) C-DNA membelogo ( o)

- (ii) During splicing
  - (a) Introns are removed and exons are joined together
  - (b) Exons are removed and introns are joined
  - (c) Both introns and exons are removed
  - (d) Both introns and exons are joined
- (iii) DNA replication is
  - (a) conservative
  - (b) dispersive
  - (c) semiconservative
  - (d) repulsive
- (iv) RNA primers are synthesized with the help of the enzyme
  - (a) RNA polymerase
  - (b) Primase
  - (c) Topoisomerase
  - (d) Ligase

- (v) The factor involved in initiation of transcription in prokaryotes is
  - (a) alpha factor
  - (b) beta factor
  - (c) sigma factor
  - (d) None of the above
  - (vi) Poly A tail is attached at the
    - (a) 3' end of DNA
    - (b) 5' end of DNA
    - (c) 3' end of RNA
    - (d) 5' end of RNA
- (vii) The release factor(s) involved in termination of polypeptide in prokaryotes is/are
  - (a) RF1
  - (b) RF2
  - (c) RF3
  - (d) RF1, RF2 and RF3

- (viii) The lac operon in E. coli was discovered by
  - (a) Meselson and Stahl
  - (b) Jacob and Monod
  - (c) Barbara McClintock
  - (d) Watson and Crick
- (ix) A miRNA is state of the st
  - (a) a small coding RNA
  - (b) a small coding tRNA
  - (c) a small non-coding RNA
  - (d) a small rRNA
- (x) The process by which a given gene is spliced into more than one type of mRNA molecule is called
  - (a) exon shuffling
  - (b) alternative splicing
  - (c) intron shuffling
  - (d) spliceosome machinery

- (xi) The site of protein synthesis is
  - (a) Nucleolus
  - (b) Ribosome
  - (c) Mitochondria
  - (d) Nucleus
- (xii) If the sequence of bases in the mRNA codon is CAU, then the anticodon sequence in the corresponding tRNA will be
  - (a) GTA
  - (b) AUG
  - (c) GUG
  - (d) GUA STARRE MAN CARROLL MANY
- 2. Write short notes on the following: (any four)
  - (a) Chargaff's rule
  - (b) Replication fork
  - (c) RNA interference
  - (d) DNA dependent RNA polymerase
  - (e) Transcription factors

- (f) Shine-Dalgarno sequence
- (g) Role of aminoacyl-tRNA synthetases
- (h) Methylation of DNA
- 3. Answer **any three** questions from the following: 5×3=15
  - (a) What is a telomere? Write a note on replication of telomere. 1+4=5
  - (b) Write the steps involved in the replication of linear ds-DNA.
  - (c) What do you mean by degeneracy of the genetic code? Define Wobble hypothesis with suitable example.

2+3=5

- (d) Briefly explain the process of rhoindependent and rho-dependent termination in prokaryotes. 3+2=5
- (e) Comment on the structure of globin mRNA with proper illustration.
- (f) What do you mean by initiation factor and elongation factor in eukaryotic translation? Name those eukaryotic initiation and elongation factors.

1+2+2=5

- (g) What is a silencer in the context of regulation of gene expression?

  Elaborate on the location of silencer within the genome. 2+3=5
- (h) What is photoreactivation repair of DNA? Write the steps involved in the process of photoreactivation repair of thymine dimer in DNA molecule.

2+3=5

- 4. Answer **any three** from the following: 10×3=30
  - (a) Briefly explain the mechanism of rolling circle DNA replication.
  - (b) What do you mean by 5'UTR and 3'UTR? Elaborate the mechanism of transcription in eukaryotes with appropriate diagrams. 2+8=10
  - (c) What are protein synthesis inhibitors? Explain the inhibition mechanism of protein synthesis inhibitors with examples. 2+8=10
  - (d) Write the difference between prokaryotic and eukaryotic translation.

- (e) What is RNA splicing? Explain the mechanism of t-RNA splicing pathway.

  2+8=10
  - (f) What is regulation of gene expression?

    Discuss the regulation of tryptophan synthesis in prokaryotes. 2+8=10
  - (g) Describe the salient features of genetic code.
  - (h) Briefly explain the structure and assembly of a prokaryotic ribosome.

    4+6=10