3 (Sem-5/CBCS) CSC HC2

5 - 0 d lad - 8 2023 AMPRAD - 8

COMPUTER SCIENCE

(Honours Core)

Paper: CSC-HC-5026

(Theory of Computation)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following as directed:

1×10=10

- (a) For the given grammar $G = (\{S\}, (a,b\}, P, S)$, the production rules P are $S \to aSb/SS/\varepsilon$. The string that will be generated by this grammar is
 - (d) Regular sets are dadaball (i)
 - (ii) a^3b^3
 - (iii) aababb
 - (iv) All of the above (Choose the correct option)

(b) In the following CFG, which variable is

 $S \rightarrow aAB$, $A \rightarrow aA/a$, $B \rightarrow bB/b$, $C \rightarrow d$

- COMPUTER SCIENCE (i)
- Paper : CSC-HC-5026 (ii)
- (Theory of Computation (iii)
- (iv) B

(Choose the correct option)

- (c) Which of the following statement is not true for PDA?
 - (i) PDA contains stack
- OI=OI×(ii) The head moves from left to right
- (iii) Input string is surrounded by infinite number of blank in both sides
- (iv) The head reads as well as writes (Choose the correct option)
 - (d) Regular sets are closed number
 - (i) union
 - (ii) Kleene closure
 - (iii) concatenation
 - (iv) All of the above (Choose the correct option)

- (e) Which of the following is not a regular expression?
 - (i) a+b
 - (ii) a
 - (iii) ab
 - (iv) a^nb^n

(Choose the correct option)

(f) Consider the following transition diagram

Which of the following string is accepted and by it?

- parse tree for 111001me (i) tring is
 - (ii) 1110001
- According to Chema10010 (iii) v CFG
- (iv) All of the above (Choose the correct option)

- (g) Which of the following is correct?
 - (i) $a^+ = a * a *$
 - (ii) $a^+ = a * a$
 - (iii) $a^+ = a^+a^+$
- (iv) $a^* = a^+a^*$

notificant gaiwol (Choose the correct option)

(ii) a

- (h) The logic of pumping lemma is good example of
 - (i) Pigeonhole principle
 - (ii) iteration
 - (iii) divide and conquer technique
 - (iv) recursion

(Choose the correct option)

- (i) The grammar that produce more than one parse tree for the same string is ______. (Fill in the blank)
 - (j) According to Chomsky Hierarchy CFG is type _____ grammar.

(Fill in the blank)

2. Answer the following questions: 2×5=10

(a) Describe the RE in English language.

(i)
$$(a+b)^*b$$
 (convert the following glammar into

(ii)
$$(a+b)^*ab(a+b)^*$$

- (b) Write the RE for the following languages over [a,b]
 - (i) Language consisting of all strings end with aa and starts with ab.
 - (ii) Language consisting of all strings at least 2a's.
- (c) Define DFA.
- (d) Describe how ambiguity can be removed from a grammar.
- (e) Prove that two Res R_1 and R_2 over Σ is closed under intersection operation.
- 3. Answer **any four** of the following questions: 5×4=20

Input=0 Input=1

(a) State Pumping lemma for regular language.

- (b) Show that $L = \{a^n b^n \mid n \ge 1\}$ is not regular.
 - (c) Convert the following grammar into CNF

$$S
ightarrow abAB$$
 $A
ightarrow bAB / arepsilon$ $B
ightarrow Baa / arepsilon$

(d) Construct a DFA equivalent to $M = (\{q_0, q_1, q_2\}, \{0,1\}, \delta, q_0, \{q_0\})$ where δ is defined by the transition table given below:

Present State		
	Input=0	Input=1
q_0	q_1, q_2	ch con 19
q_1	q_2	q_1
q_2	q_0	q_{1}, q_{2}

(e) Check whether the two DFA's M and M' are equivalent or not:

- (f) Check whether the given grammar $G = (\{S\}, \{id, +, *\}, P), S$ is ambiguous or not where P is defined by $S \rightarrow S + S/S * S/id$.
- 4. Answer **any four** of the following questions: 10×4=40
 - (a) Define PDA. Construct a PDA to accept $L = (a,b)^*$ with equal number of a and b by empty stack and final state. 2+8=10
 - (b) Answer the following:
 - (i) State and prove Arden's theorem.

7.8

5

- (ii) Construct the DFA that accept the RE $L = ab + (aa + bb)(a + b)^*$ using Arden's theorem. 5
- (c) Answer the following:
 - (i) Differentiate between DFA and NFA.
 - (ii) Construct the minimum state automation equivalent to the DFA given below:

Present State	Next State	
	Input = 0	Input = 1
$\longrightarrow q_0$	q_1	q_2
e^{10}	q_5	q_4
q_2	q_3	q_4
4 ACIG 93 1 FEE	q_5	q_0
q_4	q_3	q_2
q_5	q_2	q_2
q_6	q_2	q_3
q_7	q_2	q_1

8

- (d) Answer the following:
 - (i) Why CFG is needed to simplify?
 What are the processes of simplifying a CFG? 2+2=4
 - (ii) Simplify the CFG

$$S \to AbaC$$

$$A \to BC$$

$$B \to b/\varepsilon$$

$$C \to D/\varepsilon$$

$$D \to d$$

- (e) Answer the following:
 - (i) Define RE with example.
 - (ii) Prove the following using identities: 8

(a + abb *) + (a + abb *)(ab + abaa *)(ab + abaa *)* = ab *(aba *)*

901

- (f) Prove that CFG are closed under union and concatenation.
- (g) Answer the following: W
 - (i) Convert the following NFA with ε move to an equivalent DFA. 5

hi) Simplify the CFG

- (ii) Prove that $L = \{(a^n b^n c^n \mid i \ge 1\}$ is not context free.
- (h) Write short notes on : (any two)

 5×2=10
- (i) Chomsky's classification of *(* ada) * da = *(grammar * aada + da)(* dda + a) + (* dda + a)

- (ii) GNF
- (iii) Parse tree
- (iv) Pumping lemma for context free language