3 (Sem-5/CBCS) PHY HE 3

2023

PHYSICS

(Honours Elective)

Paper: PHY-HE-5036

(Advanced Mathematical Physics - I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×7=7
 - (a) What is isomorphism in case of a vector space?
 - (b) Define associated tensor.
 - (c) What is field? Give two examples.
 - (d) State quotient law of tensors.
 - (e) Write the scalar triple product $\vec{A} \cdot (\vec{B} \times \vec{C})$ using tensor notation.

- What is Moment of Intertia tensor?
- (g) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, find 2^A .
- Answer the following:
 - Show that diagonalizing matrix of a symmetric matrix is orthogonal.
 - b) Show that the vectors $W_1 = [2, 1, 1]$, $W_2 = [-2, 1, 2]$ and $W_3 = [0, 0, 1]$ are linearly independent.
 - What is Minkowski space? Define a four vector in this space.
 - (d) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.
- Answer any three of the following 51=8×3 What is held ? Give Tu question:
 - (a) What is binary operation? Determine toubouthe identity element and inverse for the following binary operation:

$$(a,b)*(c,d)=(ac,bc+d).$$
 1+4=5

(b) Diagonalize the matrix

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

- If a contravariant tensor of rank privolo two is symmetric in one coordinate system, show that it is symmetric in any co-ordinate ension of a system.
 - (ii) If A_{λ} is a covariant tensor of rank one, verify whether $\frac{\partial A_{\lambda}}{\partial x^{\mu}}$ is a tensor or not.
 - Find the number of independent of components second rank symmetric tensor in n-dimensional space.
 - Using the relation $ds^2 = g_{ij} dx^i dx^j$, prove that g_{ij} to journey is a symmetric tensor.

- (e) Using tensor-analysis, show that: 2+3=5
 - (i) $\varepsilon_{ils} \, \varepsilon_{mls} = 2 \, \delta_{im}$
 - (ii) $\vec{\nabla} \cdot \vec{A}$ is an invariant.
- 4. Answer any three of the following questions: 10×3=30
 - Define basis and dimension of a linear vector space. If x,y,z are linearly independent vectors, determine whether the vector x+y,y+z and z+x are linearly dependent or not. 2+3=5
 - (ii) Use ε_{ijk} to find the vector associated with the following antisymmetric tensor of rank two:

Answer any
$$\begin{bmatrix} 0 & 1 & -3 \\ 0 & 1 & 0 \end{bmatrix}$$
 in a question $\begin{bmatrix} 0 & 1 & -3 \\ -1 & 0 & 2 \\ 3 & -2 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & -3 \\ -1 & 0 & 2 \\ 3 & -2 & 0 \end{bmatrix}$

and to express cross product of vectors \vec{A} and \vec{B} . 3+2=5

(b) (i) What is Group ? Check whether the set I of all integers with the binary operation * defined by a*b=a+b+1 forms a Group.

1+4=5

(ii) Show that every linearly independent vector belonging to a vector space has a unique representation as a linear combination of its bases vector.

(c) (i) Using tensor analysis prove the following vector identities: 2+2+3=7

(a)
$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

(b)
$$\vec{\nabla} \times (\phi \vec{A}) = \phi (\vec{\nabla} \times \vec{A}) + \vec{\nabla} \phi \times \vec{A}$$

(ii) Find the second order antisymmetric tensor associated with the vector $2\hat{i} - 3\hat{j} + \hat{k}$.

50

$$y_1' = 2y_1 + 3y_2$$

 $y_2' = 4y_1 + y_2$

where
$$y_1(0) = 2$$
, $y_2(0) = 1$.

- Show that in Cartesian coordinate system, the contravariant and covariant components of a vector are identical.
- What is matric tensor g_{qr} ? Calculate (e) the co-efficients of matric tensor in spherical polar co-ordinate and then write the matric tensor. Prove that the matric tensor g_{qr} is a symmetric co-2+2+6=10 varient tensor of order 2.

6

- State Hooke's law in elasticity using tensor notation. If ε_{ii} 's denote fractional deformation, establish the relation, $\delta = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$, where δ is the change in volume associated with the deformation. 2+5=7
 - Prove that eignevalues of a hermitian matrix are real.

1+4=5

5