Total number of printed pages-20

3 (Sem-3/CBCS) MAT HG 1/2/RC

2023

MATHEMATICS

(Honours Generic/Regular)

Answer the Questions from any one Option.

OPTION-A

Paper: MAT-HG-3016/MAT-RC-3016

(Differential Equation)

OPTION-B

Paper: MAT-HG-3026

(Linear Programming)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

OPTION-A

Paper: MAT-HG-3016/MAT-RC-3016

(Differential Equation)

Answer either in English or in Assamese.

- Answer the following questions: 1×10=10 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ
 - (a) Define order and degree of an ordinary differential equation.
 সাধাৰণ অৱকল সমীকৰণৰ ক্ৰম আৰু ঘাতৰ সংজ্ঞা লিখা।
 - (b) What do you mean by an ordinary differential equation? Give one example.

 সাধাৰণ অৱকল সমীকৰণ বুলিলে কি বুজা? এটা উদাহৰণ দিয়া।
 - (c) Define exact differential equation.

 যথার্থ অৱকল সমীকৰণৰ সংজ্ঞা লিখা।
 - (d) Obtain the differential equation of family of parabolas given by $y^2 = 4ax$. $y^2 = 4ax$ অধিবৃত্তৰ পৰিয়ালটোৰ অৱকল সমীকৰণটো গঠন কৰা।

- (e) Write the condition of exactness of an ordinary differential equation.
 এটা সাধাৰণ অৱকল সমীকৰণৰ যথাৰ্থতাৰ চৰ্ত লিখা।
- (f) Find the integrating factor of $\frac{dy}{dx} + \frac{y}{x} = \cos x.$

$$\frac{dy}{dx} + \frac{y}{x} = \cos x$$
, ৰ অনুকলন গুণক নিৰ্ণয় কৰা।

- (g) Define orthogonal trajectory of a family of curve.
 এটা বক্ৰ পৰিয়ালৰ লাম্বিক প্ৰক্ষেপপথৰ সংজ্ঞা লিখা।
- (h) Write the complementary function of $(D^2 + 4)y = x^2$.

$$\left(D^2+4\right)y=x^2$$
 অৱকল সমীকৰণটোৰ পৰিপূৰক ফলনটো লিখা।

(i) Write the general form of a linear differential equation of $n^{ ext{th}}$ order.

এটা n মাত্ৰাৰ ৰৈখিক অৱকল সমীকৰণৰ সাধাৰণ ৰূপটো লিখা।

(j) If $y_1 = \sin 2x$ and $y_2 = \cos 2x$, then find the Wronskian of $y_1(x)$ and $y_2(x)$.

যদি $y_1=\sin 2x$ আৰু $y_2=\cos 2x$, তেন্তে $y_1(x)$ আৰু $y_2(x)$ ৰ Wronskian নিৰ্ণয় কৰা।

- 2. Answer the following questions: 2×5=10 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়াঃ
 - (a) Determine the particular integral of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 1 = \sin 2x.$$

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + 1 = \sin 2x$$
 অৱকল সমীকৰণটোৰ বিশেষ অনুকলন নিৰ্ণয় কৰা।

(b) Derive the orthogonal trajectory of $xy = a^2$.

 $xy = a^2$, ৰ লাম্বিক প্ৰক্ষেপপথ নিৰ্ণয় কৰা।

(c) Find the integrating factor of the differential equation
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$

$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$
 অৱকল সমীকৰণটোৰ অনুকলন গুণক নিৰ্ণয় কৰা।

(d) Solve:
$$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$$
সমাধান কৰা ঃ
$$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$$

(e) Solve:
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$$
সমাধান কৰা $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 13y = 0$

3. Answer the following: (any four) 5×4=20 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ (যিকোনো চাৰিটা)

(a) Solve:
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$
সমাধান কৰা ঃ $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$

(b) Find the orthogonal trajectories of the series of hypocycloid $x^{2/3} + y^{2/3} = a^{2/3}$.

 $x^{2/3} + y^{2/3} = a^{2/3}$, পৰিয়ালটোৰ লাম্বিক প্ৰক্ষেপপথ নিৰ্ণয় কৰা।

(c) Solve the simultaneous linear differential equations $\frac{dx}{dt} = -py$ and $\frac{dy}{dt} = px$ and show that the point (x, y) lies on a circle.

 $\displaystyle rac{dx}{dt} = -py$ আৰু $\displaystyle rac{dy}{dt} = px$; অৱকল সমীকৰণটো সমাধান কৰা আৰু দেখুওৱা যে (x,y) বিন্দুটো এটা বৃত্তত থাকিব।

(d) Solve by reducing to exact differential equation

$$xydx + (2x^2 + 3y^2 - 20)dy = 0$$

 $xydx + (2x^2 + 3y^2 - 20)dy = 0$ সমীকৰণক যথাৰ্থ অৱকল সমীকৰণলৈ সমানীত কৰি সমাধান কৰা।

(e) Solve the Bernoulli's equation:

$$x\frac{dy}{dx} + y = y^2 \log x$$

বার্নোলীৰ সমীকৰণটো সমাধান কৰা ঃ

$$x\frac{dy}{dx} + y = y^2 \log x$$

(f) Solve $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$, given that $y = x^2$ is one of the solution.

$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$$
 অৱকল সমীকৰণটো

সমাধান কৰা, য'ত সমীকৰণটোৰ এটা সমাধান $y=x^2$.

- 4. Answer the following: (any four) 10×4=40 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ (যিকোনো চাৰিটা)
 - (a) Solve by the method of variation of

parameter:
$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$

প্রাচল বিচৰণ পদ্ধতিৰে সমাধান কৰা ঃ

$$\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$$

(b) Solve:
$$\frac{d^4y}{dx^4} - y = x \sin x$$

সমাধান কৰা ঃ
$$\frac{d^4y}{dx^4} - y = x \sin x$$

(c) Solve:
$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0$$

$$\frac{dy}{dt} + 5x + 3y = 0$$

সমাধান কৰা ঃ
$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 0$$

$$\frac{dy}{dt} + 5x + 3y = 0$$

(d) Solve the exact differential equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}$$

যথাৰ্থ অৱকল সমীকৰণটো সমাধান কৰাঃ

$$x^{2}\frac{d^{2}y}{dx^{2}} + 3x\frac{dy}{dx} + y = \frac{1}{(1-x)^{2}}$$

(e) Solve by reducing to normal form

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$

নৰ্মাল ৰূপলৈ সমানীত কৰি সমাধান কৰা :

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$

(f) Show that the term $\frac{1}{x(x^2-y^2)}$ is an

integrating factor of the differential equation $(x^2 + y^2)dx - 2xy dy = 0$ and hence solve it.

দেখুওৱা যে
$$(x^2 + y^2)dx - 2xy dy = 0$$

সমীকৰণৰ এটা অনুকলন গুণক
$$\dfrac{1}{x\left(x^2-y^2
ight)}$$
 আৰু

সমাধান কৰা।

(g) Solve the equation, $4y = x^2 + p^2$, where

$$p \equiv \frac{dy}{dx}$$

সমাধান কৰা ঃ
$$4y = x^2 + p^2$$
, যত $p \equiv \frac{dy}{dx}$

(h) Discuss the method of solving a Bernoulli's equation of the form $\frac{dy}{dx} + Py = Qy^n; \text{ where } P \text{ and } Q \text{ are constants as function of } x.$

এটা
$$\frac{dy}{dx} + Py = Qy^n$$
 ৰূপৰ বাৰ্নোলীৰ সমীকৰণ সমাধান কৰাৰ পদ্ধতি আলোচনা কৰা, য'ত P আৰু Q হৈছে ধ্ৰুৱক বা x ৰ ফলন।

OPTION-B

Paper: MAT-HG-3026 (Linear Programming)

- 1. Answer the following questions: (Choose the correct answer) 1×10=10
 - (a) A basic feasible solution whose variables are
 - (i) degenerate
 - (ii) non-degenerate
 - (iii) non-negative
 - (iv) None of the above
 - (b) The inequality constraints of an LPP can be converted into equation by introducing
 - (i) negative variables
 - (ii) non-degenerate B.F.
 - (iii) slack and surplus variables

11

(iv) None of the above

- (c) A solution of an LPP, which optimize the objective function is called
 - (i) basic solution
 - (ii) basic feasible solution
 - (iii) optimal solution
 - (iv) None of the above
- (d) Given a system of m simultaneous linear equations in n unknowns (m < n) the number of basic variables will be
 - (i) m
 - (ii) n
 - (iii) n-m
 - (iv) n+m
- (e) A simplex in n-dimension is a convex polyhedron having
 - (i) n-1 vertices
 - (ii) n vertices
 - (iii) n + 1 vertices
 - (iv) None of the above

- (f) At any iteration of the usual simplex method, if there is at least one basic variable in the basis at zero level and all $z_j c_j \ge 0$ the current solution is
 - (i) infeasible
 - (ii) unbounded
 - (iii) non-degenerate
 - (iv) degenerate

 (z_i, c_i) having usual meaning)

- (g) Let $X = \{x_1, x_2\} \subset \mathbb{R}^2$. Then the convex hull C(X) of X is
 - (i) $\{\lambda x_1 + (1-\lambda) x_2 : \lambda \ge 1\}$
 - (ii) $\{\lambda x_1 + (1-\lambda) x_2 : \lambda \leq 0\}$
 - (iii) $\{\lambda x_1 + (1 \lambda)x_2 : 0 < \lambda < 1\}$
 - (iv) None of the above
- (h) For given linear programming problem, if z is an objective function
 - (i) $\operatorname{Max} z = -\operatorname{Min} z$
 - (ii) Max z = Min (-z)
 - (iii) Max(-z) = Max z

13

(iv) None of above

- (i) The set $\{(x_1, x_2): x^2_1 + x^2_2 \le 1\}$ is a
 - (i) open set
 - (ii) closed set
 - (iii) neither open nor closed
 - (iv) open and closed both
- (j) In linear programming problem
 - (i) objective function, constraints and variables are all linear
 - (ii) only objective function to be linear
 - (iii) only constraints are to be linear
 - (iv) only variables are to be linear
- 2. Answer the following: 2×5=10
 - (a) A hyperplane is given by the equation $3x_1 + 2x_2 + 4x_3 + 7x_4 = 8$, find in which half space do the point (-6, 1, 7, 2) lie.
 - (b) Prove that $x_1 = 2$, $x_2 = -1$ and $x_3 = 0$ is a solution but not a basic solution to the system of equations

$$3x_1 - 2x_2 + x_3 = 8$$
$$9x_1 - 6x_2 + 4x_3 = 24$$

14

Minimize
$$Z = 3x_1 + 5x_2$$

subject to $3x_1 + 5x_2 = 12$
 $4x_1 + 2x_2 = 10$

with
$$x_1, x_2 \ge 0$$

(d) In a two-person Zero-sum game, the pay-off matrix is given by

		E	}	
		Ι	II	III
1	I	6	8	6
Α	II	4	12	2

Find its saddle points.

(e) Show that the linear function

 $Z = C X, X \in \mathbb{R}^n$, $C \in \mathbb{R}$ is a convex function.

- 3. Answer **any four** of the following: $5 \times 4 = 20$
 - (a) Solve graphically the following LPP:

Max.
$$Z = 5x_1 + 7x_2$$

subject to
$$x_1 + x_2 \le 4$$

$$3x_1 + 8x_2 \le 24$$

$$10x_1 + 7x_2 \le 35$$

$$x_1, x_2 \ge 0$$

(b) Find all basic feasible solutions of the system of equations

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 7$$

$$2x_1 + x_2 + x_3 + 2x_4 = 3$$

- (c) Prove that the set of all convex combinations of a finite number of points $x_1, x_2, x_3, \ldots, x_n$ is a convex set.
- (d) Prove that the dual of a dual is a Primal problem itself.

(e) Solve the following transportation problem using North-West corner method whose cost matrix is given below:

Source	D_1	D_2	D_3	D_4	Supply
S_1	7	10	14	8	30
S_2	7	11	12	6	40
S_3	5	8	15	9	30
Demand	20	20	25	35	

(f) The pay-off matrix of a game is given below. Find the solution of the game to A and B.

	В						
		. I	II	Ш	IV	V	
A	I	-2	0	0	5	3	
hd	II	3	2	1	2	2	
	III	-4	-3	0	-2	6	
	IV	5	3	-4	2	-6	

- 4. Answer any four questions:
 - Old hens can be bought for Rs. 2 each but young ones cost Rs. 5 each. The old hens lay 3 eggs per week and the young ones 5 eggs per week, each being worth 30 paise. A hen costs Re. 1 per week to feed. If I have only Rs. 80 to spend for hens, how many of each kind shall I buy to give a profit of more than Rs. 6 per week, assuming that I can not house more than 20 hens? Formulate the LPP and solve by graphical method.
 - Prove that if either the primal or the dual problem of an LPP has a finite optimal solution, then the other problem also has a finite optimal solution. Furthermore, the optimal values of the objective function in both the problems are the same, i.e.

 $\operatorname{Max} Z_{x} = \operatorname{Max} Z_{x}$

(c) Solve the following assignment problem: Projects

		A	В	C	D
Engineer	I	12	10	10	8
	II	14	Not suitable	15	11
	Ш	6	10	16	4
	IV	8	10	9	7

Use simplex method to solve the LPP Max Z = 4x + 10ysubject to the constraints

$$2x + y \le 50$$
$$2x + 5y \le 100$$
$$2x + 3y \le 90$$
$$x, y \ge 0$$

Use the two-phase simplex method to solve Max $Z = 5x_1 - 4x_2 + 3x_3$ subject to the constraints

$$2x_1 + x_2 - 6x_3 = 20$$

$$6x_1 + 5x_2 + 10x_3 \le 76$$

$$8x_1 - 3x_2 + 6x_3 \le 50$$

$$x_1, x_2, x_3 \ge 0$$

(f) Solve the game whose pay-off matrix is

$$\begin{bmatrix} -1 & -2 & 8 \\ 7 & 5 & -1 \\ 6 & 0 & 12 \end{bmatrix}$$

- (g) If in an assignment problem, a constant is added or subtracted to every element of a row (or column) of the cost matrix $[c_{ij}]$, then prove that an assignment which minimizes the total cost for one matrix, also minimizes the total cost for the other matrix.
- (h) (i) What is game theory? 2
 - (ii) Describe a two-person zero-sum game. Also mention any two basic assumptions in it.
- (iii) Explain the following terms

 Optimal strategy, Pay-off matrix.

 2+2=4