3 (Sem-4/CBCS) CSC HC 1

Mesade Append M

COMPUTER SCIENCE

(Honours Core)

Paper: CSC-HC-4016

(Design and Analysis of Algorithms)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions : (by choosing the correct options) $1 \times 7 = 7$
 - (i) The highest lower bound on the number of comparisons, in the worst-case, for comparison based algorithms is the order of:
 - (a) n
 - (b) n² 1-0 A-8 E-A
 - (c) $n \log n^2$
 - (d) $n \log_2 n$

(ii)	The most	appropriate	matching	for	the
	following				

- depth first search (X)
- (1) Heap
- breadth first search
- (2) Queue
- (Z) sorting (3) Stack

- (a) X-1, Y-2, Z-3
- (b) X-3, Y-1, Z-2
 - (c) X-3, Y-2, Z-1
 - (d) X-2, Y-3, Z-1

(iii) The correct matching for the following pair—sup sat not salam Ilui

- (A) All pairs shortest paths
- (1) Greedy Algorithm
- (B) Quick sort (2) DFS
- (C) Minimum weight spanning tree (3) Dynamic programming
- (D) Connected components (4) Divide or conquer

comparison based algorithms is the

- (a) A-2, B-4, C-1, D-4
- (b) A-3, B-4, C-1, D-2
- (c) A-3, B-4, C-2, D-1
- (d) A-4, B-1, C-2, D-3

- (iv) Big-oh notation expresses the upper bound of a _____'s running time.
 - Program (a)
 - Flowchart (b)
 - Algorithm (c)
 - (d) Function (Fill up the blank with correct option)
 - Kruskal's algorithm uses _____ and Prim's algorithm uses _____ in determining the MST (Minimum Spanning Tree).
 - edges, vertex
 - (b) vertex, edges
 - (c) edges, edges
- (d) vertex, vertex (Fill up the blanks with correct options)
 - (vi) The root of Red-Black tree is:
- (a) Red
 - Black (b)
 - (c) Red or Black
 - (d) Both Red and Black

- (vii) A characteristic of the data that Binary search uses, but the linear search ignores, is the:
 - (a) order of the list
 - (b) length of the list
 - (c) maximum value of the list
 - (d) mean value of the list
- 2. Answer the following questions: 2×4=8
 - (a) Name two problems which can be solved using dynamic programming.
 - (b) Why do we consider that the counting sort Algorithm is stable? Write the reason.
 - (c) Why is Red-Black tree said to be a self-balancing tree?
 - (d) What do you mean by KMP Technique?

3 (Sem-4/ CEC N, CSC NC TO

- 3. Answer **any three** of the following questions: $5\times3=15$
 - (a) Write any three reasons for studying the space complexity, and any two reasons for studying the time-complexity of an algorithm.
 - (b) Write the two properties that are shown by a problem, when a Greedy Algorithm works fine/good.
 - (c) Briefly explain the working principle of Bucket sort.
 - (d) Write the three major phases of the 'divide-and-conquer' paradigm.
 - (e) Name five different Algorithms that are used for string matching implementation with the worst-case notation for each of them.

- 4. Answer **any three** of the following questions: 10×3=30
 - (a) Write five characteristics that are common to all Dynamic programming problems. Mention any five differences between Dive and Conquer and Dynamic programming. 5+5=10
 - (b) Explain the working principle of Radix Sort. Illustrate column-wise operation to get the sorted output of the RADIX-SORT on the given array elements: 329, 457, 657, 839, 436, 720, 355 5+5=10
 - (c) Describe the working of Counting Sort Algorithm with the help of an example.
 - (d) What do you mean by Left rotation and Right rotation operations of the Red-Black tree? Write Algorithms for Left rotation (T, x) and Right rotation (T, y).
 - (e) Write either the procedure or an Algorithm for Depth-First Search (DFS) that works on Graphs.

(f) Write any one Algorithm to determine the Minimum Spanning tree of a Graph.
Also explain briefly the main idea behind that Algorithm.