3 (Sem-5/CBCS) CSC HE 1/HE 2

2024

COMPUTER SCIENCE

(Honours Elective)

Answer the Questions from any one Option.

OPTION-A

Paper: CSC-HE-5016
(Microprocessor)

OPTION-B

Paper: CSC-HE-5026
(Numerical Methods)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

OPTION-A

Paper: CSC-HE-5016

(Microprocessor)

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) What is an opcode?
 - (b) What is ALE?
 - (c) A microprocessor is a _____ chip integrating all the functions of a CPU of a computer. (Fill in the blank)
 - (d) Which of the following is correct about 8085 microprocessors?
 - (i) Intel's 8-bit processor
 - (ii) Motorola's 8-bit processor
 - (iii) STMICROELECTRONICS 8-bit processor
 - (iv) NanoXplore 8-bit processor
 - (e) Define memory word.
 - (f) What operation can be performed by using the instruction ADD A?
 - (g) How many address lines in a 4096 × 8 EPROM CHIP?

- 2. Answer the following questions: $2\times4=8$
 - (a) Explain the contents of the accumulator after the execution of the following program segments:

MOV A, #3CH
CMA

- (b) Write instructions to load the hexadecimal numbers 65H in register C, and 92h in the accumulator A. Display the number 65H at PORTO and 92H at PORT1.
 - (c) What is the vectored interrupt?
 - (d) Write down the control and status signals.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) What are the programmer-visible registers of 8085?
 - (b) Write the logical steps to add the following two Hex numbers. Both the numbers should be saved for future use. Save the sum in the accumulator. Numbers: A2H and 18H.
 - (c) If the 8085 adds 87H and 79H, specify the contents of the accumulator and the status of the S, Z, and CY flags.

3

- (d) Explain opcode fetch machine cycle of 8085.
- (e) Draw architectural block diagram of 8085.
- 4. Answer **any three** of the following questions: 10×3=30
 - (a) Write a program in assembly language to generate a delay of 50 *msec* using LOOP instruction of 8086.
 - (b) Write an 8085 assembly language program using minimum number of instructions to add the 16-bit number. in BC, DE and HL. Store the 16-bit result in DE pair.
 - (c) Write an 8085 program to add two 16-bit numbers and store the result in location 0500H.
 - (d) Draw the block diagram of 8255 and explain its working.
 - (e) Describe the flags available in 8085A microprocessor.
 - (f) Discuss the various addressing modes of 8085. Give example.

OPTION-B

Paper: CSC-HE-5026

(Numerical Methods)

- 1. Answer the following questions as directed: $1 \times 7 = 7$
 - (a) Convergence of the Newton's method depends on the initial approximation to the root. (State true or false)
 - (b) The Gauss Elimination method is based on the idea of reducing the given system of equations Ax = b to an upper triangular system of equations Ux = z, using elementary row operations.

(State true or false)

- (c) The Gauss-Jordan method is based on the idea of reducing the given system of equations Ax = b to a diagonal system of equations Ix = d, where I is the identity matrix, using elementary row operations. (State true **or** false)
- (d) Newton-Gregory forward interpolation formula can be used

5

- (i) only for equally spaced intervals
- (ii) only for unequally spaced intervals

- (iii) for both equally and unequally spaced intervals
- (iv) for unequally intervals
 (Choose the correct option)
- (e) The trapezium rule integrates exactly polynomial of degree ≤ 1.

(State true or false)

ODE into smaller time steps and calculating the approximate solution iteratively at each step.

mereve device and garduber to a (Fill in the blank)

- (g) The first two steps of the fourth-order Runge-Kutta method use _____.
 - (i) Euler methods
 - (ii) Forward Euler method
 - (iii) Backward Euler method
 - (iv) Explicit Euler method (Choose the correct option)
- 2. Define the following terms:

2×4=8

- (a) Roundoff error
- (b) Truncation error
- (c) Consistent system of equations
 - (d) Backward difference

- 3. Answer any three of the following questions: 5×3=15
 - (a) Describe Method of False Position.
 - (b) Describe Newton-Raphson Method.
 - (c) Construct the forward difference table for the data given below:

x	-1	0	1	2	elava
f(x)	-8	3	1		
J.M-OSHI	1971	Dat	IIL	4-17	Expla

- (d) Evaluate $\int_{1}^{2} \frac{dx}{5+3x}$ with 4 subintervals using the trapezium rule.
 - (e) Solve the initial value problem yy'=x, y(0)=1, using the Euler method in $0 \le x \le 0.8$, with h=0.2.
- 4. Answer any three of the following questions: 10×3=30
 - (a) Perform four iterations of the Newton's method to find the smallest positive root of the equation $f(x) = x^3 5x + 1 = 0$.
 - (b) Solve the system of equations

$$3x_1 + 3x_2 + 4x_3 = 20$$
$$2x_1 + x_2 + 3x_3 = 13$$
$$x_1 + x_2 + 3x_3 = 6$$

using the Gauss elimination method.

(c) Solve the following system of equations:

$$x_1 + x_2 + x_3 = 1$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$3x_1 + 5x_2 + 3x_3 = 4$$

using the Gauss-Jordan method with partial pivoting.

- (d) Explain Romberg integration method.
- (e) Explain 4th order Runge-Kutta method.
- (f) Explain cubic spline interpolation method.